Four Fundamental Spaces finder
Fundamental Spaces Visualizer
Matrix Input
Type integers. Updates apply on calculate.
RREF Process (A)
RREF Process (Aᵗ)
Column Space C(A)
The RREF has a pivot in column 1, so column 1 of the original matrix is a basis for the column space C(A).
Row Space R(A)
AT =
2
1
4
2
-2
-1
RREF
1
1/2
0
0
0
0
R(A) = C(AT)
= span
Null Space N(A)
RREF =
x1
x2
x3
1
2
-1
0
0
0
-2x2 + x3
x2
x3
N(A) = span
Left Null Space N(Aᵗ)
RREF (AT)
x1
x2
1
1/2
0
0
0
0
-1/2x2
x2
N(AT) = span
Geometric Visualization
Ambient space: ℝ2Basis vectors: 1
x
y